2018Basic SciencesMathematical Sciences (including Pure Mathematics)
Masaki Kashiwara photo

Masaki Kashiwara

  • Japan / January 30, 1947
  • Mathematician
  • Project Professor, Research Institute for Mathematical Sciences, Kyoto University

Outstanding Contributions to a Broad Spectrum of Modern Mathematics: Advancement of D-module Theory from Its Foundation

Dr. Kashiwara established the theory of D-modules, thereby playing a decisive role in the creation and development of algebraic analysis. His numerous achievements—including the establishment of the Riemann-Hilbert correspondence, its application to representation theory, and contribution to crystal basis theory—have exerted great influence on various fields of mathematics and contributed strongly to their development.


Brief Biography

Born in Yuki, Ibaraki, Japan
M.Sci., Graduate School of Science, The University of Tokyo
Assistant, Research Institute for Mathematical Sciences (RIMS), Kyoto University
Associate Professor, Nagoya University
Ph.D., Kyoto University
Associate Professor, RIMS, Kyoto University
Professor, RIMS, Kyoto University (2001–2003 and 2007–2009, Director)
Emeritus Professor, Kyoto University
Project Professor, RIMS, Kyoto University

Selected Awards and Honors

Iyanaga Prize
Asahi Prize
Japan Academy Prize
Fujihara Award
Chern Medal Award
Académie des Sciences, The Japan Academy


Outstanding Contributions to a Broad Spectrum of Modern Mathematics: Advancement of D-module Theory from Its Foundation

Dr. Masaki Kashiwara has numerous outstanding achievements including the theory of D-modules, which forms the core of algebraic analysis. Developing this theory from its foundation, he applied it across various fields of modern mathematics.

Algebraic analysis is the study of objects in analysis such as differential equations by using the methods of modern algebra. In his earlier studies, Dr. Kashiwara, jointly with Dr. Mikio Sato and Dr. Takahiro Kawai, completed the classification theory of systems of linear partial differential equations (1). In algebraic analysis, systems of linear differential equations are studied as modules over a ring D of differential operators, that is, as D-modules. Establishing the basic theory of D-modules all alone, Dr. Kashiwara laid the foundation for its subsequent development.

One of his most remarkable achievements is the construction of the Riemann-Hilbert correspondence. To each linear differential equation is associated the concept of monodromy group, a topological datum which measures the multi-valuedness of its solutions. The Riemann-Hilbert problem asks the converse, namely whether there exists a linear differential equation which has a given monodromy group. It had been solved affirmatively in dimension one. The case of higher dimensions had been a longstanding issue, to which Dr. Kashiwara provided an ideal answer in terms of D-modules (2, 3). This is a beautiful synthesis of geometry, algebra and analysis. Dr. Kashiwara and his collaborator were one of the two research groups who solved the Kazhdan-Lusztig conjecture as an important application of the Riemann-Hilbert correspondence to representation theory (4). Furthermore, the collaborative research on the extension to infinite dimensional Lie algebras (5, 6) became a key step in completing the Lusztig program on representations of algebraic groups in positive characteristic.

Theory of crystal bases of quantum groups is another important achievement of Dr. Kashiwara in representation theory. Quantum groups are a deformation of Lie algebras by a parameter q. Dr. Kashiwara found that a significant simplification occurs in the limit where qbecomes 0 and introduced crystal bases at q= 0 with a combinatorial graph structure, which reduced many problems in representation theory to combinatorics (7). It makes theory of crystal bases a powerful tool in representation theory and integrable systems. Dr. Kashiwara further showed that crystal bases uniquely extend to global crystal bases defined for an arbitrary value of q(8), which turned out to coincide with the canonical bases introduced by Dr. Lusztig in 1990 for both q= 0 and global cases from a completely different viewpoint.

Dr. Kashiwara has made a wide range of contributions, often collaborating with many coauthors. Some of his outstanding achievements include developing microlocal analysis of sheaves (9, 10). Even today, he continues to contribute to his field with important results such as the extension of the Riemann-Hilbert correspondence to irregular singularities (11).

For these reasons, the Inamori Foundation is pleased to present the 2018 Kyoto Prize in Basic Sciences to Dr. Masaki Kashiwara.

(1) Sato M et al. (1973) Microfunctions and pseudo-differential equations. In Lecture Notes in Math.287(Springer-Verlag, Berlin-Heidelberg-New York): 265
(2) KashiwaraM (1980) Faisceaux constructibles et systèmes holonômes d’équations aux dérivées partielles linéaires à points singuliers réguliers. InSéminaire Goulaouic-Schwartz, 197980, Exposé 19, École Polytechnique, Palaiseau.
(3) KashiwaraM (1984) The Riemann-Hilbert problem for holonomic systems. Publ RIMS, Kyoto Univ20: 319–
(4) Brylinski J-L & KashiwaraM (1981) Kazhdan-Lusztig conjecture and holonomic systems. Invent Math64: 387
(5) Kashiwara M & Tanisaki T (1995) Kazhdan-Lusztig conjecture for affine Lie algebras with negative level. Duke Math J77: 21–
(6) Kashiwara M & Tanisaki T (1996) Kazhdan-Lusztig conjecture for affine Lie algebras with negative level Ⅱ: Nonintegral case. Duke Math J84: 771–
(7) Kashiwara M (1990) Crystalizing the q-analogue of universal enveloping algebras. Comm Math Phys, 133: 249–
(8) Kashiwara M (1991) On crystal bases of the q-analogue of universal enveloping algebras. Duke Math J63: 465–
(9) Kashiwara M & Schapira P (1985) Microlocal study of sheaves. Astérisque128.
(10) KashiwaraM (1985) Index theorem for constructible sheaves. Astérisque130: 193–
(11) D’Agnolo A & Kashiwara M (2016) Riemann-Hilbert correspondence for holonomic D-modules, Publ Math-Paris123: 69–197.


Abstract of the Lecture

Fifty Years with Algebraic Analysis

Two years after matriculating at the University of Tokyo in 1965, I joined that university’s Mathematics Department but I did not have the slightest inclination to become a mathematician at that time. It was only my encounter with Dr. Mikio Sato, in 1968, that ultimately led me to pursue a career in mathematics. Dr. Hikosaburo Komatsu (still in his 30s) had just returned from the U.S., and he and Dr. Sato were holding weekly algebraic analysis seminars. At the strong recommendation of Dr. Takahiro Kawai, who was my senior by a year, I began attending those seminars and that was where I got to know Dr. Sato. That chance meeting opened the door to my subsequent career as a researcher in mathematics, specifically algebraic analysis.

In fact, Dr. Sato was the founder of the field of algebraic analysis. Today, we mathematicians call a variable quantity a function, and the act of researching a function is referred to as mathematical analysis, whereas algebra involves study in which numbers and their mathematical operations (sums and products) are expanded beyond ordinary numbers for the purposes of research. Then, algebraic analysis employs algebra to elucidate essential qualities that lie deep within mathematical analysis.

In 1969, when I began attending his seminars, Dr. Sato presented the idea of micro local analysis, which makes it possible to handle non-smooth functions algebraically. This approach would subsequently spread to mathematical fields beyond mathematical analysis in various ways. Since then, my main work has been to establish a technique for connecting geometry and algebra through utilization of mathematical analysis.

After completing my master’s program in 1971, I took up an assistant position at Kyoto University’s Research Institute for Mathematical Sciences (RIMS), where I spent several years enthusiastically establishing micro local analysis with Drs. Sato and Kawai, who had also transferred there. Having the chance to engage in mathematics with those two eminent figures represented a giant leap forward in my life as a mathematician. From them, I learned the joy of conducting mathematical research. Thereafter, I went on to achieve many things, including the establishment of the Riemann-Hilbert correspondence and discovery of crystal bases, and it was my encounter with those two pioneers that laid the foundations for all of my subsequent mathematical research.



Perspectives in Algebraic Analysis

Monday, November 12, 2018, 13:00 - 17:25
Room420, Research Institute for Mathematical Sciences, Kyoto University
Coordinators and Moderators
Takuro Mochizuki (Professor, Research Institute for Mathematical Sciences, Kyoto University), Syu Kato (Associate Professor, Graduate School of Science, Kyoto University)
Organized by Inamori Foundation
Co-organized by Research Institute for Mathematical Sciences, Kyoto University
Supported by Kyoto Prefectural Government, Kyoto City Government, NHK
With the Cooperation of the Mathematical Society of Japan


Opening Address Michio Yamada (Director, Research Institute for Mathematical Sciences, Kyoto University)
Introduction of Laureate Takahiro Kawai (Professor Emeritus, Kyoto University)
Keynote Talk Masaki Kashiwara (Laureate in Basic Sciences)
“Quiver Hecke Algebras, Quantum Coordinate Ring and Localization”
Pierre Schapira (Professor Emeritus, Sorbonne University)
“Ind-sheaves and Holonomic D-modules”
Takeshi Saito (Professor, Graduate School of Mathematical Sciences, the University of Tokyo)
“Characteristic Cycle of an ℓ-adic Sheaf”
Bernard Leclerc (Professor, Laboratoire de mathematiques Nicolas Oresme, Universite de Caen Normandie)
“Real Elements of Crystal Bases and Their Categorification”
Tomoyuki Arakawa (Professor, Research Institute for Mathematical Sciences, Kyoto University)
“Moore-Tachikawa Varieties and 4d/2d Dualities”
Closing Address Takuro Mochizuki / Syu Kato