Announcement of the 2015 Kyoto Prize Laureates

The Inamori Foundation (President: Kazuo Inamori) is pleased to announce the laureates of the 2015 Kyoto Prize, an international award presented to individuals who have contributed significantly to the scientific, cultural, and spiritual betterment of mankind. This year’s Prize goes to the following three individuals. The total of the Kyoto Prize laureates marks 100 this year (99 individuals and the Nobel Foundation). The Kyoto Prize Presentation Ceremony will be held in Kyoto, Japan on November 10. Each laureate will receive a diploma, the Kyoto Prize medal (20K gold), and prize money of 50 million yen.

ADVANCED TECHNOLOGY
Prize Field : Materials Science and Engineering

Dr. Toyoki Kunitake
(Japan / February 26, 1936 / Age 79)

Chemist; President, Kitakyushu Foundation for the Advancement of Industry, Science and Technology

Pioneering Contributions to the Materials Sciences by Discovering Synthetic Bilayer Membranes and Creating the Field of Chemistry Based on Molecular Self-Assembly

Dr. Kunitake was the first in the world to report that synthetic molecules could spontaneously produce bilayer membranes—a basic structure common to the biological membranes of living cells. His innovative research has helped to illuminate the formation of bilayer membranes as a universal phenomenon not only in aqueous but also in organic solvents for amphiphilic compounds with extensive molecular structures. By systematizing a mechanism of synthetic bilayer membrane formation, he helped to establish the new and promising academic field of chemistry based on molecular self-assembly, which is opening new frontiers in the materials sciences.

BASIC SCIENCES
Prize Field : Earth and Planetary Sciences, Astronomy and Astrophysics

Dr. Michel Mayor
(Switzerland / January 12, 1942 / Age 73)

Astrophysicist; Professor Emeritus, University of Geneva

Outstanding Contributions in Evolving a New Vision of the Universe through the Discovery of Extrasolar Planet

Dr. Mayor answered a fundamental age-old question of astronomy regarding the existence of exoplanets by discovering the first one orbiting a Sun-like star. This achievement was facilitated by his continuous refinement and improvement of observation technology, including the development of a series of spectrographs. His continuing contributions have revealed the diversity of exoplanets, opening an entirely new field of research.

ARTS AND PHILOSOPHY
Prize Field : Theater, Cinema

Mr. John Neumeier
(Germany, U.S.A. / February 24, 1942 / Age 73)

Choreographer; Intendant and Artistic Director, The Hamburg Ballet

A Choreographer Who Developed 20th Century Ballet to New Levels, and Continues to Lead the Global Dance Scene Today

Mr. Neumeier is a world-leading choreographer who specializes in applying traditional ballet technique and vocabulary to maximize the potential for bodily expression and capture the details of human psychology. He has gradually combined the essence of two genres, dramatic ballet and abstract ballet, thereby raising the art to a new level.

(Age is as of June 19, 2015)
Pioneering Contributions to the Materials Sciences by Discovering Synthetic Bilayer Membranes and Creating the Field of Chemistry Based on Molecular Self-Assembly

Dr. Kunitake was the first in the world to report that synthetic molecules could spontaneously produce bilayer membranes—a basic structure common to the biological membranes of living cells. His innovative research has helped to illuminate the formation of bilayer membranes as a universal phenomenon not only in aqueous but also in organic solvents for amphiphilic compounds with extensive molecular structures. By systematizing a mechanism of synthetic bilayer membrane formation, he helped to establish the new and promising academic field of chemistry based on molecular self-assembly, which is opening new frontiers in the materials sciences.

Discovering synthetic bilayer membranes and creating a new field of chemistry based on molecular self-assembly

Our bodies are made up of cells. Cell membranes are the structures that separate cell interiors from the outside environment, playing a vital role in sustaining life. These membranes consist of amphiphilic compounds (elongated molecules containing both hydrophilic and hydrophobic regions), which are neatly arranged, face-to-face, in two layers (Fig.1). The phenomena in which molecules gather together spontaneously to form ordered structural arrangements is known as “self-assembly.”

In 1977, Dr. Kunitake was the first in the world to report that synthetic molecules could spontaneously produce bilayer membranes—a basic structure common to the biological membranes of living cells (Fig.2). He subsequently developed several hundred different types of molecules and showed that those molecules self-assemble spontaneously within water and organic solvents, organizing into highly ordered molecular structures (Fig.3). By taking a chemical approach to the study of molecular organization, Dr. Kunitake demonstrated that self-assembly can be artificially reproduced—a new landmark for the study of materials.

Dr. Kunitake has remained focused on this research since his original discovery, establishing molecular self-assembly as one of the key concepts in the field of chemistry and showing how it may be applied to the materials sciences. Through these achievements, he has played a major role in creating a new interdisciplinary trend known as “chemistry based on molecular self-assembly.”

Applying chemical research based on molecular self-assembly to the materials sciences

Dr. Kunitake’s brainchild, “chemistry based on molecular self-assembly,” has accelerated the development of many new research fields, including polymer materials science, surface science, and supramolecular chemistry. It is already appearing in a wide range of applications.

Dr. Kunitake has also personally contributed to the development of a variety of immobilized bilayer membrane materials, such as bilayer membrane multilayer films, in a bid to utilize bilayer membranes as solid materials. The resulting immobilized synthesized molecular membranes have found numerous applications in the medical and diagnostic fields, including uses as sensor materials (Fig.4).
ACHIEVEMENTS OF THE 2015 KYOTO PRIZE LAUREATE IN ADVANCED TECHNOLOGY

Prize Field: Materials Science and Engineering

Dr. Toyoki Kunitake

Pioneering Contributions to the Materials Sciences by Discovering Synthetic Bilayer Membranes and Creating the Field of Chemistry Based on Molecular Self-Assembly

In 1977, Dr. Toyoki Kunitake became the first scientist to report that synthetic molecules could spontaneously produce bilayer membranes—a basic structure common to the biological membranes of living cells. His subsequent research helped illuminate the formation of bilayer membranes as a universal phenomenon, observed not only within water, but also within organic solvents for amphiphilic compounds with extensive molecular structures, as well as biolipids. He went on to systematize a mechanism of synthetic bilayer membrane formation through his unique organic-chemistry-based research methodology, developing techniques to immobilize bilayer membranes and produce self-assembling materials. In so doing, he helped establish the new and promising academic field of chemistry based on molecular self-assembly.

Dr. Kunitake’s approach to synthetic bilayer membranes was revolutionary, overturning the previously held assumption that ordered molecular self-organizational structures like biological membranes could be formed only by biolipids. His research made it possible, for the first time, to gain a molecular design-based understanding of how molecular organizational structures and physical properties, which are created in a hierarchical manner through self-assembly, correlate with the molecular structures of components. While extending the use of molecular self-assembly from aqueous to organic solvents, he generalized the conventional image of hydrophilic and hydrophobic portions of amphiphilic molecules in colloid and surface science, so we can now think in terms of the larger categories of molecular parts that are solvophilic and solvophobic. Dr. Kunitake also showed that a specific interaction among functional groups derived from advanced ordered structures appears in bilayer membranes, thereby establishing a fundamental concept of chemistry based on self-assembly: that such interactions on the molecular level as well as their collective functions may be controlled according to molecular orientation and distribution. Furthermore, he went on to lead innovations in materials science founded on this basic research.

Dr. Kunitake’s major achievements include: (1) He developed various methods for bilayer membrane immobilization, such as fixing the orientation of proteins, thereby enabling the creation of precisely organized membranes. Bilayer membranes immobilized in this way are used to produce super-laminated solid molecular-oriented film electrodes in fully automated electrolyte analyzers for medical use and in-vitro diagnostic testing. (2) He synthesized two-dimensional polymer and two-dimensional ultrathin silica films using thin layer structures built by organic molecular assembly as molds. His studies of ultrathin silica films subsequently evolved into research on template synthesis of mesoporous materials. (3) He recently developed a technique for manufacturing large, free-standing nanostructured thin films, approximately 15 nm thick. This type of film is far thinner than both conventional electrolyte films (10-100 µm) and reverse osmosis membranes (several hundred nm), yet it possesses notable strength as well as extreme flexibility. These characteristics had long been sought in the functional membrane field and, at present, there are high expectations for their wide-ranging application, including improvements in fuel cells and solutions to environmental problems.

Through these achievements, Dr. Kunitake has expanded the concept of molecular self-assembly-based chemistry and opened a new frontier in the field of materials science using self-assembly techniques. At the same time, he has trained a number of highly accomplished researchers in the fields of chemistry and materials science while making significant contributions to international academic exchange.

Today, molecular self-assembly is widely recognized as one of the most useful concepts in advanced materials design, and scientists around the globe in many different fields are conducting research based on this concept.
BIOGRAPHY OF THE 2015 KYOTO PRIZE LAUREATE
IN ADVANCED TECHNOLOGY

Prize Field: Materials Science and Engineering

Dr. Toyoki Kunitake
Chemist

Affiliation: Kitakyushu Foundation for the Advancement of Industry, Science and Technology

Title/Position: President

Date of Birth: February 26, 1936

Nationality: Japan

Brief Biography:
1936 Born in Kurume, Fukuoka, Japan
1962 Ph.D. in Chemistry, University of Pennsylvania
1962–1963 Postdoctoral Fellow, California Institute of Technology
1963–1974 Associate Professor, Faculty of Engineering, Kyushu University
1974–1999 Professor, Faculty of Engineering, Kyushu University
1999–2007 Group Director, Spatio-Temporal Function Materials Research Group, Frontier Research System, RIKEN
2001–2008 Vice President, the University of Kitakyushu
2007–present Director, NanoMembrane Technologies, Inc.
2009–present President, Kitakyushu Foundation for the Advancement of Industry, Science and Technology

Selected Awards and Honors:
1978 The Award of the Society of Polymer Science, Japan
1990 The Chemical Society of Japan Award
1998 SPSJ Award for Outstanding Achievement in Polymer Science and Technology
1999 Medal with Purple Ribbon, Government of Japan
2001 Japan Academy Prize
2007 Person of Cultural Merit, Government of Japan
2011 The Order of the Sacred Treasure, Gold and Silver Star, Government of Japan
2014 Order of Culture, Government of Japan

Members: The Chemical Society of Japan, The Engineering Academy of Japan, The Society of Polymer Science, Japan

Selected Publications:
Outstanding Contributions in Evolving a New Vision of the Universe through the Discovery of Extrasolar Planet

Dr. Mayor answered a fundamental age-old question of astronomy regarding the existence of exoplanets by discovering the first one orbiting a Sun-like star. This achievement was facilitated by his continuous refinement and improvement of observation technology, including the development of a series of spectrographs. His continuing contributions have revealed the diversity of exoplanets, opening an entirely new field of research.

The eve and advent of the discovery of exoplanets

"Beyond our solar system, could any planets exist that orbit stars similar to our Sun?"

In 1995, Dr. Michel Mayor and his colleague answered this question in the affirmative. The report of their discovery was met with much surprise, marking an entirely new paradigm in astronomy.

While it had become possible to observe distant stars by 1995, no planet orbiting a Sun-like star had ever been discovered outside of our solar system. There were occasional reports of possible discoveries, but all had been refuted by 1995. In fact, the scientific community had largely abandoned its expectations when the team led by Dr. Mayor announced exoplanet 51 Pegasi b.

Impact on planetary formation theory

Before this discovery, several researchers were developing a theory to explain the process of planetary formation based on the knowledge of our solar system. One such researcher was Dr. Chushiro Hayashi, who received the Kyoto Prize in 1995. However, the discovery of 51 Pegasi b overturned many widely supported hypotheses on the basis of its extremely short orbital period—just 4.2 days, despite having mass comparable to that of Jupiter. Such a phenomenon was completely unthinkable in terms of conventional theory, leading Dr. Hayashi’s model to evolve into a more universal theory of planetary formation.

Behind the discovery: astonishing observational accuracy

The technique employed by Dr. Mayor, known as the radial velocity method, utilizes spectrographs to measure the velocity of exoplanets. The instrument that his team is now using delivers unprecedented performance that can detect stellar motion with an accuracy of 1 meter per second (m/s) or less. These technologies allow researchers to estimate the mass and many other features of exoplanets.

In search of a “second Earth”

The initial exoplanet discovery by Dr. Mayor and his colleague led many other researchers into this field. Today, realistic expectations exist that an exoplanet relatively similar to Earth will be discovered in the not-too-distant future. Humankind has long contemplated the existence of extraterrestrial life. The past 20 years have seen the rapid discovery of many planets that may possess liquid water, thought to be essential to life, leading the entire world to await the possible discovery of life on another planet.
ACHIEVEMENTS OF THE 2015 KYOTO PRIZE LAUREATE
IN BASIC SCIENCES
Prize Field: Earth and Planetary Sciences, Astronomy and Astrophysics

Dr. Michel Mayor

Outstanding Contributions in Evolving a New Vision of the Universe through the Discovery of Extrasolar Planet

People have wondered for many years whether planets orbiting Sun-like stars exist outside of our own solar system. Enormous advances have been made in recent years with regard to this fundamental question. The discovery of the first such exoplanet by Dr. Michel Mayor served as the catalyst for these advances, opening up a new intellectual horizon. His observational discovery, which represented a clear answer to this question, deserves special recognition in the history of astronomy in the past 20 years. It not only led to the subsequent discovery of many other exoplanets, but also opened prospects for future experimental studies in planetary science and astrobiology. His outstanding contributions are certainly worthy of recognition with the Kyoto Prize.

Dr. Mayor had originally conducted an extremely intensive spectroscopic exploration for small-mass companions of solar-type stars by developing a series of high-dispersion spectrographs. In the course of this exploration, in 1995, together with Dr. Didier Queloz, a graduate student at that time, he discovered the planet 51 Pegasi b, which orbits the star 51 Pegasi. Surprisingly, its orbital period is only 4.2 days despite the fact that its mass is comparable to that of Jupiter. Its properties were completely unexpected from the perspectives of our solar system’s structure and planetary formation theory.

Their discovery was later verified by Dr. Geoffrey Marcy’s independent observations, resulting in the advent of an exciting new research field: “exoplanets.” Other observations that followed led to the discovery of many similar gas giant planets with short orbital periods, which have been dubbed “hot Jupiters.” Subsequent discoveries have included planets with large and quite eccentric elliptical orbits, unlike those in our own solar system with nearly circular orbits. This has revealed the incredible diversity of exoplanets, some of which are remarkably different from those of our solar system. As a result of constant improvements to his high-dispersion spectrographs, Dr. Mayor’s work has significantly contributed to the discovery of “super-Earth” planets with mass several times greater than that of Earth.

To date, many more exoplanets have been discovered using a variety of observation techniques, such as the transit method, which records the periodic stellar eclipses that occur when an orbiting planet obscures part of a star from our view, as well as the radial velocity method employed by Dr. Mayor. Such rapid progress has enabled us to conduct statistical research of exoplanets. Special mention must be made of the Kepler space observatory, which has found several thousand planet candidates using the transit method. Expectations for continued significant progress in this field have also been raised by the development of adaptive optics technology, which has made it possible for groups of researchers, including a Japanese group using the Subaru Telescope, to directly capture images of exoplanets—something that was virtually impossible 10 years ago.

In the future, the use of giant telescopes to observe the exoplanets themselves with a high degree of precision is expected to bring about an unbroken succession of new scientific milestones. Hopes are high for the discovery of a “second Earth,” a habitable planet with the potential to support life due to the presence of liquid water and indications of life through atmospheric observation. Research on exoplanets ranks among the most pivotal topics of 21st century astronomy, planetary science and astrobiology; and, the steady expansion of this new research frontier that Dr. Mayor opened is unequivocal.
BIography of the 2015 Kyoto Prize Laureate
in Basic Sciences

Prize Field: Earth and Planetary Sciences, Astronomy and Astrophysics

Dr. Michel Mayor
Astrophysicist

Affiliation: University of Geneva Title/Position: Professor Emeritus
Date of Birth: January 12, 1942 Nationality: Switzerland

Brief Biography:
1942 Born in Lausanne, Switzerland
1971 Ph.D. in Astronomy, University of Geneva
1971–1984 Research Associate, University of Geneva
1984–1988 Associate Professor, University of Geneva
1988–2007 Professor, University of Geneva
1998–2004 Director, Observatory of Geneva, University of Geneva
2007–present Professor Emeritus, University of Geneva

Selected Awards and Honors:
1998 Marcel Benoist Prize
1998 Jules Janssen Medal
2000 Balzan Prize
2004 Albert Einstein Medal
2005 Shaw Prize in Astronomy
2010 Karl Schwarzschild Medal
2010 Viktor Ambartsumian Prize
2015 Gold Medal of the Royal Astronomical Society

Members: American Academy of Arts and Sciences, European Academy of Sciences,
French Académie des sciences, National Academy of Sciences,
Royal Astronomical Society

Selected Publications:
THE 2015 KYOTO PRIZE LAUREATE
IN ARTS AND PHILOSOPHY

Prize Field: Theater, Cinema

Mr. John Neumeier

A Choreographer Who Developed 20th Century Ballet to New Levels, and Continues to Lead the Global Dance Scene Today

Mr. Neumeier is a world-leading choreographer who specializes in applying traditional ballet technique and vocabulary to maximize the potential for bodily expression and capture the details of human psychology. He has gradually combined the essence of two genres, dramatic ballet and abstract ballet, thereby raising the art to a new level.

Master choreographer in today’s dance scene

Mr. Neumeier, a native of Milwaukee, Wisconsin, U.S.A., has directed the Hamburg Ballet for more than four decades. He enjoys a strong following in Europe, where ballet audiences look forward to his works with great enthusiasm. His masterpieces are performed not only in Germany but also around the globe by other first-class ballet companies, exerting significant influence on the entire ballet community. With a deep interest in Japanese culture, Mr. Neumeier has created several pieces that beautifully evoke Japanese sensitivity, lyricism, and connection to the changing seasons. The most famous of these is his Seven Haiku of the Moon.

The culmination of 20th century ballet

Ballets choreographed by Mr. Neumeier depict complex human psychology in the most sophisticated manner. He has never been content to merely absorb the classical traditions, but draws from traditional ballet techniques to establish his own unique art. In works such as Illusions—like “Swan Lake” and Lady of the Camellias, he surprises audiences with a fresh experience by incorporating new interpretations and perspectives into classical repertoires and literary works. When choreographing musical masterpieces, such as Third Symphony of Gustav Mahler, he interprets the compositions by immersing himself in them deeply to produce emotional expressions through the dancers’ movements—despite the fact that no distinct stories are recounted in such works. Individual scenes are elaborately structured through choreographic design that corresponds to the fine nuances of the compositions, thus ensuring that the ambience of each composition is exquisitely expressed. In both dramatic and abstract works, Mr. Neumeier’s rich musicality serves as the essential power underpinning the persuasive, inspirational quality of his creations.

Contributions to ballet culture

Today, his activities extend beyond ballet production to the promotion of ballet culture in general. Since 1975, he has organized the Hamburg Ballet Days, attracting ballet companies and dancers from around the world, who draw inspiration from each other through their unique performances. Since founding the Hamburg Ballet School in 1978, he has continued to devote considerable time and energy to ballet education. In 2006, he established the Foundation John Neumeier to preserve his historic ballet collections for the benefit of future generations. And, in 2011, he founded Germany’s National Youth Ballet for the purpose of developing the talents and skills of young dancers.
Mr. John Neumeier

A Choreographer Who Developed 20th Century Ballet to New Levels, and Continues to Lead the Global Dance Scene Today

Mr. John Neumeier is a choreographer who uses traditional ballet techniques and vocabulary to broaden the range of bodily expression while pursuing a penetrating inquiry into human psychology.

Born in 1942 in Milwaukee, Wisconsin, U.S.A, Mr. Neumeier studied literature and dance before joining the Stuttgart Ballet in 1963. Inspired by the creative atmosphere of that company, which served as a spearhead of the innovative theatrical dancing of the era, his talent soon blossomed. He attained the position of artistic director of the Hamburg Ballet in 1973, where he has now served for more than four decades. More recently, he has been busy creating full-length works of ballet while continuing to play a leading role in the international ballet community.

Mr. Neumeier’s creative approach is highly intellectual, as evidenced by his insights into storytelling, sophisticated mise-en-scène, and lighting artistry. Underlying these aspects are intense emotions involving romantic love, empathy with the ballet characters, and a deep love of humanity. It is for these reasons that the world’s leading ballet companies and dancers are so eager to add his works to their repertoires. Additionally, with his deep interest in Japanese culture, he has presented a wonderful representation of Japanese sensitivity and lyricism, and the sense of seasonal changes that forms the background to such sentiments, in *Seven Haiku of the Moon* and *Seasons—The Colors of Time*, both commissioned by the Tokyo Ballet.

His oeuvre can be divided into three main categories, with the first being “re-interpretation of classical ballet in the modern context.” While maintaining the scale and splendor of a grand ballet at a prominent opera house, he injects new creative genius by merging the original narratives and choreographic settings into another, often highly unusual context. For example, in *Illusions*—like *Swan Lake*, Ludwig II, also known as the Mad King of Bavaria, replaces Prince Siegfried, thus making the theme of self-destruction due to the darkness of one’s own mind stand out in the illusionary nature of the original classic.

In the second category of “adapting literary works into ballet,” Mr. Neumeier boldly transforms great novels, myths and biographies that had not necessarily been regarded as suitable subjects for ballet previously into story ballets of considerable weight using intense bodily expressions unique to dance. In his representative work, *Lady of the Camellias*, he successfully symbolizes various aspects of the main character’s love using three *pas de deux* that are beautifully distinct from one another. His mastery is beyond comparison in how he transforms virtuosity in a lift, a technique used in those *pas de deux*, into a way of expressing internal emotions. He has also produced many brilliant works in which male dancers play the lead roles, such as *Othello, Odyssey*, and *Nijinsky*, demonstrating his broad artistic perspective.

In the third category, “abstract ballet based on musical masterpieces,” he carefully identifies the emotions and thoughts intrinsic to original compositions and successfully visualizes them, as can be clearly observed in the *Third Symphony of Gustav Mahler*. In this regard, his abstract works contain as much lyricism as his narrative works. It should be noted that his incisive and all-encompassing musicality, which can be glimpsed in those abstract works, is the essential power that underpins the persuasiveness and inspirations of his narrative ballets as well.

Since the dawn of the 20th century, the evolution of ballet has taken two divergent paths. One is that of “danced dramas,” which make a clean break from the romantic fairy tales of the 19th century and focus on more realistic human portrayals. The other is the “visualization of music,” which is closely aligned with musical constructions. Initially recognized as having a background in the former, Mr. Neumeier has gradually combined the essences of the two genres, thereby raising the art of ballet to yet another level of sophistication. By performing his ballets, created on his belief that dance is a unique art form that can express the full spectrum of human emotion and psychology through body movements, many of the world’s great dancers have achieved even more artistry, and their performances help bring to maturity the entire community of ballet, including the audience; this cycle has already been repeated. His works never fail to inspire the kind of profound meditation that serves as a creative starting point among the choreographers of the next generation. Consequently, Mr. Neumeier will certainly continue to exert a major influence on the future of ballet as an art form.
BIOGRAPHY OF THE 2015 KYOTO PRIZE LAUREATE
IN ARTS AND PHILOSOPHY

Prize Field: Theater, Cinema

Mr. John Neumeier
Choreographer

Affiliation: The Hamburg Ballet
Title/Position: Intendant and Artistic Director
Date of Birth: February 24, 1942
Nationality: Germany, U.S.A.

Brief Biography:
1942 Born in Milwaukee, Wisconsin, U.S.A.
1961 B.A. in English Literature and Theater Studies, Marquette University, U.S.A.
1963–1969 Worked as a dancer and choreographer at the Stuttgart Ballet
1969–1973 Director, The Ballet Frankfurt
1973–present Artistic Director and Chief Choreographer, The Hamburg Ballet
1978 Founded the School of the Hamburg Ballet
1996–present Intendant, The Hamburg Ballet
2006 Founded Germany’s National Youth Ballet
2011 Established Foundation John Neumeier

Selected Awards and Honors:
1983 Dance Magazine Award
1988 German Dance Prize; Prix Diaghilev
2006 Nijinsky Award
2007 The Herbert von Karajan Music Prize
2008 German Dance Prize

Selected Works:
1971 Romeo and Juliet: The Nutcracker
1975 Third Symphony of Gustav Mahler
1976 Illusions—like “Swan Lake”
1978 Lady of the Camellias: The Sleeping Beauty
1985 Othello
1989 Seven Haiku of the Moon
1995 Odyssey
2000 Nijinsky: Seasons—The Colors of Time
2005 The Little Mermaid
2011 Liliom
2014 Tatjana
EVENT SCHEDULE OF THE 2015 KYOTO PRIZE

1. WELCOME RECEPTION (by invitation only)
 DATE and PLACE: November 9, 2015 (Mon.) / Kyoto Hotel Okura
 The welcome reception and dinner will be hosted by Kyoto Prefectural Government, Kyoto City Government and Inamori Foundation in honor of the laureates.

2. PRIZE PRESENTATION CEREMONY (by invitation only)
 DATE and PLACE: November 10, 2015 (Tue.) / Kyoto International Conference Center

3. JOINT PRESS CONFERENCE (for media only)
 DATE and PLACE: November 10, 2015 (Tue.) / Kyoto International Conference Center
 A joint press conference attended by the laureates will take place right after the Presentation Ceremony.

4. BANQUET (by invitation only)
 DATE and PLACE: November 10, 2015 (Tue.) / Grand Prince Hotel Kyoto

5. COMMEMORATIVE LECTURES (open to the public)
 DATE and PLACE: November 11, 2015 (Wed.) / Kyoto International Conference Center
 The laureates will talk their views and their personal philosophies to general audience.

6. WORKSHOPS
 DATE and PLACE: November 12, 2015 (Thu.) / Kyoto International Conference Center or others
 Three workshops in the presence of laureates, scholars and experts will be held in parallel at each venue.
 * Due to the laureate’s schedule, the workshop in Arts and Philosophy will be rescheduled. It is under consideration now to be held in the first half of next year. More detail will be announced in late September.

7. YOUTH DEVELOPMENT PROGRAMS
 DATE and PLACE: to be released in late September
 Laureates will give special classes or forums for children and students. More detail will be announced in late September.

8. KYOTO PRIZE LAUREATES LECTURES IN KAGOSHIMA (open to the public)
 DATE and PLACE: to be released in late September
 This Kagoshima event, started last year, is organized by the “Kyoto Prize Laureate Lectures Committee” consisting of Kagoshima Prefecture, Kagoshima City, Kagoshima University and Kagoshima Chamber of Commerce and Industry, with support of the Inamori Foundation. More detail will be announced in late September.

9. KYOTO PRIZE SYMPOSIUM IN U. S. A. (open to the public)
 DATE and PLACE: March 15 (Tue.) - 17 (Thu.), 2016 / San Diego, California, U.S.A.
 Three symposia will be held in honor of the 2015 Kyoto Prize laureates in San Diego, California, U.S.A. hosted by Kyoto Symposium Organization and local universities (San Diego State University, University of California, San Diego, University of San Diego, and Point Loma Nazarene University). This event marks its 15th anniversary in 2016.
CONTACT

Takeshi Nakajima (Mr.)
General Manager, Public Relations Division, Inamori Foundation
620 Suiginya-cho, Shimogyo-ku, Kyoto 600-8411 Japan
Tel : +81-75-353-7272 Fax : +81-75-353-7270
E-mail : comm@inamori-f.or.jp URL : www.inamori-f.or.jp