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The Kyoto Prize is renowned for recognizing contributions to human betterment across a 
remarkable range of disciplines. I am profoundly honored to have my research considered worthy 
of this year’s Prize in the area of Basic Sciences. 

In this lecture, I want to highlight some key findings from my four decades of research on the 
epidemiological and evolutionary dynamics of pathogens in time and space. I’ll begin by painting a 
simple picture of what drives the dynamic patterns we see in infectious disease epidemics. I’ll then 
explore three major themes that span my research career, focusing on how pathogen evolution is 
necessary to understand epidemic spread, and vice versa. Finally, I’ll summarize some broad 
lessons that I’ve learned about the process of doing science. 

What is Infectious Disease Modeling?

My research group and I have studied the epidemic dynamics of many infectious diseases, 
notably measles, influenza, rotavirus, enteroviruses, and latterly SARS-CoV-2. What do we mean by 
epidemic dynamics? Here is a lovely example. Fig. 1 is a graph of data from the Japanese National 
Institute of Infectious Diseases. It shows the number of cases of children diagnosed with Hand 
Foot and Mouth Disease (HFMD) from the early 1980s to the mid 2010s. HFMD is caused by 
enterovirus infections, and the number of cases oscillates considerably over time. This is an 
example of a dynamical pattern. My research has centered on using simple mathematical models 
to understand key aspects of infectious disease dynamics. 

Fig. 1

As in many areas of science, it can be useful to explore a relatively simple system to try to 
understand some basic principles. For epidemics, measles is arguably such a system, for two 
reasons: firstly, it has a straightforward natural history of infection, and secondly, particularly rich 
historical data are available. Measles is an acute infection caused by an RNA virus. It is highly 
transmissible, mainly via a respiratory route. It mostly affects children. The symptoms are very 
characteristic which helps the process of surveillance. It causes significant disease, and can be fatal 
in some circumstances. Interestingly, measles is immunosuppressive, yet elicits a strong immune 
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response against future measles infection. Once infected, individuals develop strong immunity that 
is lifelong. This is particularly important for the modeling that I will describe presently. There is an 
excellent vaccine, which was first developed in 1963. Despite this, there is still a high disease 
burden in some countries, and vaccine hesitancy is a continuing problem. In many parts of the 
world, doctors have long been required to report measles cases. For example, in England and 
Wales, we have records of cases going back to the 1940s. Epidemics waxed and waned, often in 
regular cycles. The cycles are fairly synchronized geographically. For example, when there’s an 
epidemic in London, there tend to be similar outbreaks nearby. We can also see some evidence of 
“waves of infection” moving away from London and other large cities. We can explain many of 
these patterns, using mathematical models. 

What do I mean by a model? It’s an attempt to capture key biological features of a system to 
explain observed patterns. Ideally, we focus only on absolutely necessary details. Fig. 2 is a picture 
that captures a very simple model for the natural history of measles infection. When they are born, 
babies can have immunity from their mothers. This wanes over a few months. They then become 
susceptible to infection and can acquire the infection by contact with infected people. During 
infection, they can infect others. After a couple of weeks, most people recover, and cease to be 
infectious. Their immune systems have learned how to recognize the virus, and they no longer 
have serious disease or transmit the virus if they are exposed to it again. We can express this 
progression through stages of disease mathematically in the so-called Susceptible-Infected-
Recovered, or SIR model for epidemic spread. A key parameter in this model is the transmission 
rate, which is often measured by the reproduction ratio, the number of secondary cases caused by 
an infected person. We can use this simple model to explain the dynamics of cases through time, as 
shown in Fig. 3. We start off with one infected person, indicated in red, on the left side of the 
graph, and everyone else in the population is susceptible, shown in black (Fig. 3). The infected 
person gives the disease to several other people, and they in turn pass it on, which causes a rapid 
increase in the number of cases. This quickly depletes the susceptible population, and as people 
recover, they become immune, shown in green (Fig. 3). As the number of susceptible people 
dwindles, the pace of the epidemic slows, and the number of cases starts to decline. Each infected 
person passes the disease to fewer and fewer susceptible people, because more and more of the 
people they come into contact with are immune. Eventually, we end up with most people having 
contracted the disease and recovered. There are not enough susceptibles to continue the epidemic, 
so it dies out. This is the simplest possible model. In reality, things can be more complex. For 
example, births generate new susceptible individuals. When these build up enough, we can have 
another epidemic. 

Fig. 2
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Fig. 3

Time Series Analysis of Infectious Disease Epidemics

With this simple model as background, I now turn to major themes in my research. The first 
of these is looking at non-linear epidemic dynamics, the determinants of regular and chaotic 
fluctuations, and disease persistence. I explored these in measles and other childhood infections. 
We needed, first, to develop statistical methods to analyze epidemiological data, as well as new 
modeling frameworks. Then we applied these tools to address biological questions. 

One of the statistical methods I deployed to describe the dynamics of epidemics was time 
series analysis. I was encouraged to do this by two gentlemen: my postdoctoral advisor Roy 
Anderson and his great collaborator, the distinguished theoretical biologist, Robert May (Fig. 4). 

Fig. 4 Right: Roy Anderson, left: Robert May

Specifically, I taught myself Fourier analysis and used it to explore how the cyclicity of 
epidemics changed due to the impact of vaccination. It’s always great fun to have a new method, 
and learn a new method and apply it. At that time, I was based at Imperial College London, and had 
access to summary measles data for England and Wales. But when I moved to the University of 
Cambridge, some years later, I discovered, much to my delight, that the England and Wales 
measles data was available in its entirety in the University Library there. The full dataset, which I 
and my research group digitized, was a great resource for subsequent modeling. Once we had 
these detailed data, we were able to adapt more sophisticated time series methods, notably wavelet 
spectra, to describe changes in epidemic cyclicity in space and time. This is also a great example of 
serendipity in research. I was browsing through a journal looking for something else, and came 
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across a meteorological paper that used wavelet analysis. I realized that the analytical techniques 
used in that paper, from quite a different academic field, could be adapted to quantify changes in 
epidemic cyclicity not only through time, but also across space. 

From Epidemiological Patterns to Infection Dynamics

So far in this research theme, I’ve been showing examples applying statistical methods to 
describe what happens in epidemics. But we don’t just want to describe the patterns we see, we 
want to understand “why” we are seeing them. What underlying processes could be causing the 
fluctuations we see? To answer this, we need to develop mechanistic models. I have already shown 
the simplest of these models, the SIR model, in measles. We made a lot of progress on this 
following my move to the University of Cambridge and digitization of the detailed datasets. I won’t 
go through this in detail, but I touch on some of the mechanisms that I and my research group 
have shown to affect patterns of disease across space and time. Firstly, seasonality can be an 
important driver of disease transmission. We see this in measles in England and Wales, as 
epidemics coincide with the start of the school year, when susceptible children gather. Secondly, 
how big does a population need to be before disease ceases to vanish from an area in the troughs 
between epidemics? This is the idea of critical community size and stochastic persistence. Thirdly, 
when particular age classes of people, such as children, are important for transmission, how does 
the age structure of populations combine with seasonality to drive the epidemic? Fourthly, how do 
changes in the supply of susceptible individuals, whether increased through births, or removed by 
vaccination, affect epidemic dynamics? We didn’t only look at measles for these questions, we were 
also lucky enough to get data for other diseases such as whooping cough, that’s pertussis. Much of 
this work was done in my early period in the University of Cambridge, in collaboration with a 
wonderful set of students and postdocs. 

In order to more efficiently tackle the very large amounts of spatio-temporal data available to 
us, we also had to develop new methods to fit models statistically to epidemiological time series. 
We therefore developed the Time Series SIR (TSIR) model, aided by my then-postdoc Barbel 
Finkenstadt’s great statistical intuition. This model captures the impact of bir th rates and 
seasonality on epidemic dynamics, as summarized in Fig. 5. In this graph, the open circles show 
data for London, and the red curve shows what’s projected by our model. As you can see, the 
model captures much of the variation in the data. In par ticular, there were annual cycles 
immediately after the Second World War, when birth rates were high. There’s then a transition to 
biennial epidemics as birth rates drop. Since this work was published, my colleagues Ottar 
Bjørnstad and Jessica Metcalf have applied the TSIR model much more broadly, to other diseases 
and contexts. 

Not all the epidemic series we see in measles are regular cycles as we saw in Fig. 5. Models 
had suggested that increasing seasonal forcing of transmission could make the cycles irregular, or 
even chaotic. We used rich data sets from contrasting epidemiological settings, together with the 
TSIR model, to show that epidemics can indeed be very irregular, with a signature of chaos, in 
highly seasonal environments. For example, Fig. 6  shows measles epidemics in Niamey in Niger. 
The data were collected as part of a great collaboration with Médecins Sans Frontières and the 
Niger Ministry of Health. Our models showed that the pattern was driven by highly seasonal 
movement of a large portion of the population: people moved from farming areas to cities in the 
dry season and back for the wet season. 
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Fig. 5

Fig. 6

Spatial Dynamics of Infection

So far, we’ve been looking at patterns of cases through time. But as I mentioned earlier, there 
are also rich and important spatial patterns in epidemics. That is, infections spread from place to 
place, and epidemics can become locally extinct for a while, especially in small populations. 

We explored the spatio-temporal dynamics of measles by extending the SIR model to 
metapopulations. This allowed us to capture how the flow of infection between towns and cities 
affects the pattern of cases. Specifically, we adapted a technique known as “gravity modeling” from 
spatial geography. We used these gravity models along with a novel competing risks framework to 
quantify epidemiological linkages between towns and cities, based on distance and population size. 
We showed that large cities are very important for driving epidemics across the whole country. 
You can see in Fig. 7, where each circle depicts a town, and the size of the circle is related to the 
town’s population size. If we look at the yellow circles, we see that London has considerable 
influence in seeding measles epidemics in the whole south-east of England. 

Looking at how vaccination affects this spatial spread, we showed that the influence of large 
cities is strong in the pre-vaccination era, before the late 1960s. In Fig. 8, this is indicated by the 
blue symbols on the maps. However, as vaccination reduces cases, local stochastic transmission 
and long-distance seeding come to dominate transmission. This is shown in black symbols on the 
later maps in Fig. 8. These dynamics have significant implications for the efforts to eliminate 
measles regionally.
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Fig. 7

Fig. 8

Phylodynamics

Thus far, we have mainly considered infections, like measles, where people who recover from 
infection have strong lifelong immunity. But, for many diseases, notably influenza and COVID-19, 
immunity is weaker and more short-lived. This partial immunity often arises because of viral 
evolution. Some viruses can be strongly selected to evolve to escape prevailing immunity in the 
host population. I’ll illustrate this with a comparison of the evolutionary dynamics of measles and 
influenza. 

Both measles and influenza are RNA viruses with error-prone replication. This means the 
offspring viruses are often slightly different from their parents. Depending on where mutation 
occurs, offspring viruses can have the same surface molecules as their parents, or different ones. 
In measles, the surface molecules are highly stable through time, so once the host immune system 
has encountered the virus, it can recognize subsequent variants. But in influenza, the surface 
molecules are much more variable, allowing the potential for immune escape. That is, host 
immunity developed in response to the parent virus is not as effective at protecting from new 
variants. This leads to sharply different evolutionary trees for the two viruses (Fig. 9). Measles 
doesn’t show any directional evolution to avoid immunity. By contrast, seasonal influenza has a 
highly characteristic “ladder-like” phylogeny, as new escape variants are progressively selected to 
avoid prevailing population immunity. In our model, this means that people who were in the 
“recovered” group regain susceptibility to the next variant. You’ve probably become somewhat 
familiar with this concept over the last few years as the world has seen the spread of successive 
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variants of the SARS-CoV-2 virus. To understand these patterns, we need a model that captures not 
just the impact of host immunity on pathogen phylogenies, but also how this interaction affects the 
epidemiology of the infection. 

I coined the term “phylodynamics” as shorthand for the interaction between viral evolution, 
host immunity, and epidemiological dynamics. The extent of pathogen immune escape is a balance 
between opposing forces (Fig. 10). On one hand, selection for new variants increases as host 
immunity strengthens. On the other hand, viral abundance in hosts, and hence transmission to new 
hosts, declines with the strength of immunity. The more offspring a parent virus produces, the 
more opportunities for onward transmission of the virus to new hosts. One of the main concepts of 
phylodynamics is that selection for pathogen immune escape is strongest at intermediate levels of 
host immunity (Fig. 10). Since my colleagues and I first proposed this set of ideas in 2004, they 
have been refined and widely applied by us and other groups. 

Fig. 9

Fig. 10

For example, we need to account for pathogen evolution when looking at the spatial spread of 
many diseases, such as influenza. In measles, spatio-temporal patterns we see, especially in the pre-
vaccination era, are largely driven by transmission between children, often in school settings. This 
is because of lifelong immunity across variants. In sharp contrast, the spread of seasonal influenza 
in the U.S.A. appears to be largely driven by the commuting patterns of adults, with some long-
distance spread (Fig. 11). This is because of immune escape. Immunity is only partial, so adults 
can be repeatedly infected by successive influenza variants. 
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Fig. 11

We have also shown that the relationship between immune escape and strength of immunity 
can be complex. For example, it can depend on the details of pathogen life history. This is 
illustrated by rotavirus, a major cause of infant diarrhea. Rotavirus is only imperfectly immunizing, 
so we would not expect to see strong evidence of herd immunity. But in fact, rotavirus does show 
evidence of herd immunity in response to highly efficacious vaccines. This is illustrated in Fig. 12. 
The left-hand figure shows the observed cases, and the right-hand figure shows model predictions. 
Pre-vaccination epidemics in the U.S.A. are shown with blue curves. Epidemics in the early era of 
vaccination are indicated by the red curves. Comparing these, we see that epidemics in the mass 
vaccination era are delayed as well as being smaller. This provides strong evidence for herd 
immunity, essentially because the vaccine prevents highly transmissible primary infections of 
rotavirus. 

Fig. 12

We can also apply phylodynamic ideas to look at epidemic spread of a disease with which we 
have all become very familiar over the last few years, COVID-19. We began early in the pandemic 
by developing a series of simple models to project how the strength of natural and vaccine 
immunity to the virus might affect the medium-term dynamics of the epidemic. We showed that 
imperfect immunity would lead to much more pessimistic outcomes, though effective vaccines 
would mitigate these impacts somewhat. As we now all know, this has largely come to pass. We 
then explored how vaccine dosing regimes and inequities in vaccine distribution between countries 
might affect the evolution and spread of new variants. Our results underline the importance of 
global equity in vaccine distribution. If vaccines are inequitably distributed, the probability of new 
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variants that can escape immunity increases. 
Of course, there are many other complexities that may need to be taken into account in 

understanding the dynamics of the COVID-19 pandemic. For example, some individual hosts 
spread the disease to a huge number of other people: so-called superspreading. Some people who 
become infected develop “long COVID,” and so on. In our group, we have focused on two other 
important issues. First, the impact of COVID-19 non-pharmaceutical interventions on the incidence 
of other pathogens. For example, transmission of influenza and respiratory syncytial virus dropped 
considerably because people were staying at home and masking, but both diseases are now 
rebounding. Second, we have been exploring the impact of climatic drivers, such as humidity, on 
viral transmission. To cut a long story short, when there are a large number of susceptible people, 
we expect to see a relatively small impact of climate. So, we didn’t expect to see large seasonal 
fluctuations in the very early stages of the pandemic. 

Broad Lessons from My Career

In the last part of the talk, I’d like to mention a few broader lessons that I have learned over 
the last several decades. First, biology is often extremely complex, but sometimes, simple models 
can explain some of the complexity. For example, our TSIR model could explain very different 
patterns of measles epidemics in different parts of the world, from regular cycles to chaos-like 
behavior. But emergent simplicity doesn’t always happen. For example, humans can sometimes 
respond to epidemics by changing their behavior, and so affect transmission and other key drivers 
of epidemic dynamics in complex ways. 

Secondly, comparative studies can be extremely valuable, as can collaboration across 
disciplines. We can often draw lessons from particular systems and apply them more broadly. Fig. 
13 shows just a few examples from my four decades of research. It was while I was looking at 
epidemics of influenza in horses that I really started developing some of the ideas that would 
become central to the theories in phylodynamics. Thinking about spread of morbilliviruses in seals 
and dolphins informed useful analyses of invasion and persistence in human diseases. Work on the 
2001 foot and mouth disease outbreak in cattle and sheep in the U.K. helped shape my thinking 
about spatial dynamics of other diseases, and the impact of non-pharmaceutical interventions. A 
great collaboration on filariasis in southern India made me think about the immuno-epidemiology 
of chronic infections. In an even bigger leap between systems, analyzing sheep population cycles 
on the island of Hir ta, St Kilda, provided interesting comparisons to my work on measles 
oscillations. 

Fig. 13
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The third broad lesson I want to highlight is that it is very important to understand how 
dynamics at dif ferent biological scales interact. We have a great illustration of this in the 
phylodynamics of important human diseases like influenza and SARS-CoV-2 (Fig. 14). In these 
systems we see that changes in the virus at the molecular level can affect disease dynamics at all 
larger scales, which then feed back to processes at the molecular level. This is illustrated in the 
simple chart (Fig. 14). The details aren’t important, just notice that there are feedbacks from the 
molecular level, through the level of individual hosts, host populations, and more globally. To 
complete the circle, evolution of new variants at the global level affects what happens at the 
molecular level. For example, a new variant can have different surface molecules that interact with 
host cell receptors. What’s more, heterogeneity and hysteresis at each of these levels can further 
affect the picture. 

Fig. 14

A major gap in our understanding of cross-scale dynamics is the impact of host immunity at 
different scales. How host immunity affects pathogen evolution and vice versa is particularly 
important to understand. Historically, disease surveillance has focused on the dynamics of cases, 
and, latterly, changes in viral genomes. But going forward, we really should also look at the 
dynamics of immunity much more systematically. My colleagues Jessica Metcalf, Michael Mina 
and I have proposed one way to do this. A “global immunological observatory” would use serology 
and other methods to gauge population immunity to a range of pathogens across the world. 

My final broad point is that much of science is a team sport. Collaboration can be extremely 
fruitful and enjoyable, especially collaborations with people from different disciplines. In four 
decades of research, I have had the huge pleasure of working with many wonderful people, from 
biologists, physicists and mathematicians, to clinicians and social scientists. I want to thank them 
all for their inspiration, dedication, and friendship. 

Little did I know as a child that my interests in biology and mathematics at school would 
eventually lead to working with such a talented set of people. I was born just outside Swansea in 
South Wales. My mother was a school cook and my father worked in a steelworks, and then as a 
clerk. I went to the local primary school, where I contracted measles, aged 6. At that point in time, 
there were no vaccines available. Consequently, many children became infected with measles 
during their first year or two at school, if they hadn’t already been infected by an older sibling 
bringing the disease home from school. I was an only child, and was probably infected by contact 
with a classmate, like so many others in that era. When I was eleven, I went to the local grammar 
school. I became especially interested in biology, but also remember being thrilled when 
introduced to limits and differential calculus in mathematics. No one in my family had gone to 
university before. But they valued education highly and were very supportive of my decision to 
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study zoology at Imperial College London. At the age of 18, I went from my small village to the 
biggest city in the U.K. for my undergraduate studies. At the time in Imperial College, there was a 
very strong group working on theoretical ecology, led by an inspiring early mentor, Sir Richard 
Southwood. I’m extremely shortsighted, and wasn’t at all accomplished at laboratory science 
dissection and other practical assignments, so I gravitated towards theory. I discovered in my 
second year that I was reasonably adept at computer programming. This was the era of punchcard 
machines, and I became increasingly fascinated by the use of mathematics to describe biological 
patterns and processes. 

Based on this, I decided to undertake graduate studies, and moved to the University of York. 
Under the supervision of John Beddington, I did doctoral work characterizing whale population 
dynamics in the Southern Ocean. It may seem a bit of a leap from cetaceans to infectious diseases, 
but the link here is the use of mathematics as a tool to address important biological problems. I 
began studying infectious disease dynamics during a postdoc at Imperial College, and was lucky 
enough to be able to go on to run my own research groups in universities on both sides of the 
Atlantic. It is now a tremendous privilege to have my research considered worthy of this year’s 
Kyoto Prize in Basic Sciences, and I am deeply grateful to the Inamori Foundation.


