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METALLURGY AND THE EVOLUTION OF MATERIALS
SCIENCE AND ENGINEERING

Morris Cohen

Introduction

Only a minuscule fraction of matter in the universe is accessible to earthlings
for useful purposes as well as for study. This “fact of nature” highlights the
distinction between matter in general and materials in particular. Thus, materials
consist of those substances, both natural and manmade, that society can employ
for producing things, e.g., edifices, machines, devices, tools, utensils, clothing,
weapons, ornaments, and products of all kinds. From the perspective of history,
materials such as wood, stone, fibers, ceramics, and metals have played an
intimate role in the advance of civilization, and have become thoroughly ingrained
not only in human existence, but also in the quality of life. Clearly, then, materials
must be regarded as an essential working medium of society; they constitute one
of the basic resources of the human race — along with living space, food, energy,
information, and manpower.

Inasmuch as materials thereby comprise an important part of the natural
world that can be adapted to serve societal purposes, it is no wonder social and
intellectual forces are tending to pull various disciplines and subdisciplines into a
coherent body of knowledge in order to reveal more about the character and
utility of materials. What has emerged in this evolutionary transition is Materials
Science and Engineering (MSE). In a rather natural way, the well-established
discipline of metallurgy — namely, the science and engineering of the metallic
state — has provided an appropriate paradigm for the newer and broader field of
MSE, within which metallurgy now functions as a vital and exemplary component
in coordination with other classes of materials. The field of ceramics, like
metallurgy, has also reached the status of a discipline in its own right, and is now
likewise recognized as a prominent component of MSE.

Before examining the significance of MSE, in concept and in operation, it is
well to visualize the scope of the overall materials enterprise.

The Global Materials Cycle

Some 15 billion tons of raw materials (ores, minerals, coal, crude oil, natural
gas, rock, sand, timber, rubber, etc.) are extracted annually from natural sources
by mining, drilling, and harvesting from land and sea, to be processed into bulk
and engineering materials (metals and alloys, ceramics and glass, chemicals,
cement, lumber, dielectrics, semiconductors, plastics and elastomers, paper, com-
posites, etc.) for fabrication into articles of commerce in response to societal
demand. In duc course, after these materials have played out their respective
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functions in service, they are discarded as scrap, either to be recycled for use
again, or somehow returned to nature whence they came. Accordingly, the total
materials system is a cradle-to-grave circuit on a global scale, involving interde-
pendence as well as competition among countries and companies. It is evident that
this global materials cycle — so named by the COSMAT Report of 1974(1)—
participates significantly in the foreign and domestic affairs of nations for bath
economic and strategic reasons. That study found, for instance, that the materials
cvcle accounts for about one-fifth of the gross national product together with
one-fifth of the human employment in the United States, not including the produc-
tion of food and fuel.

The materials cycle is driven by societal demand, with value being added
progressively to the materials-flow around the circuit. A substantial portion of
this added value is in the form of energy. Approximately one-half of the energy
consumed by manufacturing industries in the United States is expended in the
production, refining, fabrication, and assembly of materials into end-products.
Conversely, materials are necessary for supplying energy in useful form. In
addition to the indispensability of fuel materials for generating energy, virtually
all advanced energy-conversion technologies are presently materials-limited from
the standpoint of efficiency, reliability, safety, or cost-effectiveness. This is the
case, for example, with gas turbines, nuclear reactors, solar-energy devices,
magnetohydrodynamics, high-energy batteries, and fuel cells.

The flow of materials in the materials cycle can be greatly perturbed at any
given point by economic factors (e.g.,competitiveness), political actions (e.g.,.em-
bargoes), or social decisions (e.g..environmental regulations), which may take
place elsewhere in the world. Shortages in materials are usually due to man-made
disruptions rather than to global scarcities in natural sources. It should also be
recognized that the operation of the materials cycle inevitably taxes the environ-
ment through waste disposal, pollution, and landscape disfigurement, thus impact-
ing the availability of clean living space and injecting real, but hard-to-assess,
social costs. These are major issues which must be faced by those concerned with
the overall human benefits to be derived from MSE. Metallurgy has had to cope
with this problem for many decades.

The Nature of MSE
Materials science and engineering comprises a mixture of disciplines
(branches of knowledge) that provide an intellectual approach for dealing with
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Figure 1. A model of materials science and engineering, indicating countercurrent flows of
scientific and empirical knowledge relative to materials, Based on COSMAT Report of

1974(1)
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materials as a part of nature, and for harnessing them for human purpose. The
aforementioned COSMAT Study(1) arrived at the model of MSE illustrated in Fig.
1. It is a knowledge-generation and knowledge-transfer system which extends
from basic science and fundamental understanding (on the left) to societal needs
and experience (on the right). MSE attempts to relate the processing of materials
(including their synthesis, specimen preparation for research, large-scale produc-
tion in the materials cycle, and fabrication for end-use) to their inner architecture
(comprising all levels of structure and composition) and their manifested prop-
erties (of all relevant types), and then to their ultimate performance in service
applications. COSMAT defined MSE more succinctly but in similar terms: “MSE
is concerned with the generation and application of knowledge relating the
composition, structure, and processing of materials to their properties and uses.”
Metallurgy has functioned in this way for over a hundred years. since the
momentous disclosure of microstructure, whereas MSE came into being in this
mode only some 30 years ago.

Materials science and engineering is holistic in the sense that it emphasizes a
continuity in the field of materials between science, engineering, technology, and
the requirements of society. As such, it exposes humankind to the opportunities
opened up by fundamental knowledge concerning materials, and conversely, it
exposes scientific theory and experimentation regarding materials to the demands
and experience of humankind. In fact, MSE operates most effectively for discover-
ing and applying new processes and materials when the countercurrent flows
(indicated in Fig.1) of scientific knowledge gained from research and empirical
knowledge acquired from experience are so intimately mixed that each catalyzes
the other. Thus far, MSE has not replaced or eliminated any of the disciplines or
subdisciplines that contribute to it. Instead, MSE acts as a multidisciplinary arena
for all branches of knowledge that can shed light on materials. In so doing, MSE
promotes new interactions and interdisciplinary objectives that are not otherwise
fostered among the separate disciplines.

Case studies of selected material innovations have been described in consider-
able detail(2), covering metallic, ceramic, polymeric, and electronic materials.
Generally speaking, these advances were initiated by societal “pull” rather than
by scientific “push,” although science was invariably brought to bear in the
progress toward successful utilization. Even the oft-cited transistor “break-
through”— which emanated so spectacularly from brilliant theory, basic research,
and novel processing — was actually first inspired (at the Bell Telephone Labora-
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tories) by a perceived societal need to move well beyond the existing vacuum-tube
technology in order to achieve more complex switching and multichannel trans-
mission circuitry for future communication systems. This is a particularly reveal-
ing example of the synergistic interplay between experience and scientific findings
in MSE. It is a functional style that characterizes the way MSE works, but it has
long been exemplified in the operation of metallurgical science and engineering.

More recent examples in MSE continue to be consistent with this theme.
Figure 2 portrays the “quantum” advances that have heen attained in strong
permanent magnets, notably in the discovery of the Nd,,Fe,;B-type intermetallic
compounds and their appropriate processing (3). This development resulted from
experimental research and societal pull. No theory was on hand to predict such
magnetically strong compounds or to guide their improvement. Undoubtedly, the
necessary theoretical work will be forthcoming in time and will contribute quite
beneficially to both the understanding and the further progress of these Lech-
nologically important materials, but MSE and society do not have to wait for that
desirable occurrence. One can already see this materials advance is likely to exert
a major influence on new motor and electronic device designs, featuring greater
efficiencies and miniaturization.

The dramatic discovery of high-temperature superconductivity in layered
copper oxides, more specifically (La,Sr),Cu0O; and YBa.Cu;Ox, offers another
case in point, as denoted by the striking increase of the critical temperature (Tc)
in Fig, 3(4). Here again, there was no theory even to hint at, let alone predict, this
astonishing solid-state behavior. Indeed, the ensuing burst of excitement through-
out the world has been due not only to the prospect of revolutionary new technol-
ogies (the societal pull), but also to the demonstrated inadequacy of existing
theory for a physical property as noteworthy as superconductivity. And vyet, in
view of the very nature of MSE, experimental research on the associated process-
ing/structure/property relationships in these ceramic materials is proceeding
apace, with due attention to the combined effects of temperature, magnetic field,
and current density for accessing and stabilizing the superconducting state of
candidate materials, as suggested by Fig. 4(5). Furthermore, inasmuch as MSE
carries over to materials performance and end-products, fabricability to useful
shapes and suitable mechanical properties to withstand service stresses are also
essential objectives, no less important than any further raising of Tec. This need to
balance many factors for eventual performance in service highlights one of the
significant differences between MSE and solid-state physics.
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Predictability versus Reciprocity in MSE

In MSE, one would ideally like to use the structure of materials to predict
properties, then to use properties to predict performance, and finally to select a
sequence of processing procedures that will yield the desired material and inner
structure at a reasonable cost. [Towever, there is much that interferes with this
simple logic, in view of the deliberate continuity of science and engineering in
MSE. The properties which enable materials to perform their respective assign-
ments in service, and in harmony with the diverse functions of their companion
materials, are numerous and complex, and they must also manifest themselves
satisfactorily under the multidimensional requirements of the designated applica-
tion. There is just no way of itemizing all of the operating and environmental
variables for complete property simulation in the laboratory; moreover, the
properties that can be measured will, at best, be only simple images of what may
be at play in service performance.

In a real sense, then, materials behavior in service is unknowable from
properties alone (6). Properties can offer valuable guidance when combined with
accumulated experience, but one would not expect to rely on prediction in the first
instance, no matter how accurately the measurable properties might be known. As
with a musical instrument, no one can truly deduce how well it will perform until
it is actually played. Indeed, empirical knowledge is often needed first in order to
decide just which properties should be evaluated to correlate with performance. It
is not predictability but mutual reciprocity between properties and performance
(with each reinforcing the other in a symbiotic interplay) that participates so
successfully in the practical output of MSE. In line with the MSE model of Fig. 1,
we are referring here to a purposeful intermixing between scientific experimental
knowledge relating to selected properties (mechanical, chemical, electrical, etc., as
the case may be) and empirical knowledge arising from service experience.

Similar reasoning applies to structure/property relationships. Much of the
science in MSE is directed to explanations of the observed properties of materials
in terms of their internal structure. Such linkages are typically made through
theories, models, or assumed mechanisms. However, the very idea of structure
encompasses many levels of fine scale entities or “building blocks” nesting
together in hierarchies of regularities and irregularities. The schematic structure
of a macromolecular composite material in Fig. 5 — specifically a tendon which
connects muscle and bone in humans and animals — is particularly instructive; it
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illustrates several hierarchical levels, together with their respective size scales,
nomenclature, and methods of detection(7). The many kinds of interfaces in
Figure 5 must also be considered as important property-influencing elements of
the structure. And not shown here are still finer constituents such as molecules,
atoms, electrons, and ghostlike particles ranging on down through the subnuclear
hierarchies until comprehension is exhausted. Under these circumstances, and in
the context of MSE, one must surely question whether it will ever be possible to
predict from first principles, or from structure alone, the relatively intricate
properties that make materials useful to humankind. Fortunately, MSE can avoid
this profound issue by depending on the mutual reciprocity between internal
structure and measured properties, and not on a first-order predictablility of one
from the other. Again, MSE promotes a synergistic mixing of scientific and
empirical information—with structure and properties contributing, each in its own
way, to a deeper and more helpful understanding of both.

It becomes evident that in its comparatively brief existence MSE has taken
on the back-and-forth information-transfer features which have successfully
evolved in metallurgy ever since, over a century ago, Henry Clifton Sorby opened
up the science of metallography by revealing the microstructure of polished-and-
etched iron and steel with the petrographic microscope (8). Plainly, the ultimate
conversion of scientific understanding into societal well-being via MSE cannot be
represented by a one-way stream of knowledge into practice. It depends more on
turbulent, mutually interactive flows among the MSE components of processing,
structure, properties, and performance. MSE seems to function most effectively as
a dynamic system of knowledge generation and utilization when its elements are
closely coupled, and are also subjected to the stimulating and biasing forces of
human needs.

An Example of MSE in Operation: Rapid Solidification Processing

In MSE as well as in metallurgy, advances in structure/property relationships
— and likewise in the development of new materials — are often crucially
dependent on the emergence of novel processing methods. One such instance is
rapid solidification processing.

With certain alloy systems, cooling rates of 10*—10° degrees per second from
the liquid state can avoid crystal nucleation, or solidification in the ordinary sense,
and this results in the formation of metastable noncrystalline solids, otherwise
termed metallic glasses. This phenomenon has been known since 1960 when the



@A T

Evidence:
Xray Xray X ray EM
e M SEM

SEM OM

TROPO-

COLLAGEN 15nm
staining
ates

B4.0nm

iodicity :
periodicity reticular

’ ; membrane
fibroblasts “"";:“m fascicular

| crimp structure membrane

T3 150m |D£20nm sol—snu nm 50-300gm  100-500m
Size Scale

25, A=iE (B8 ORIEIREEOBEN, g, BFb SUBE ST, 85 DS C—asEt
FlbllbE, EM—EFldE. SEM — LR THEed, OM— 28iiel. #1271 » 7. O™zt 5,
Figure 5. Schematic illustration of the hierarchical structure of a biological material (tendon),
showing size scales, terminology, and methods of observation. Abbreviations: DSC-
differential scanning calorimetry; EM-electron microscopy; SEM-scanning electron

microscopy; OM-optical microscopy. From Kastelic etal.(7)

FTREPEBRETEDIC, FTEMCLE L INZDIIRBRICILTWLHERTT, &
HUF TR T3 . FlE - THOFARBRIC) FHFETHI L TEDHHEL
BAEE DHWIEOMHMEC L 20D T, HWICHELH > TV 5D TT, X1 O#F
Bl - THET MR RSI/SE By, (L5, BREY, Zofl) cBRET
DEEENIHGE & (EFEERD 542 F N D REERIHEED W IEOH BT LIRAPRINT
WET,

[FRRDIEFRDS, WEORES & OB S WIEOBMRTLROL L £ 7. #MEF
e THEIZBITARD Z <13, MR NEBREE (23500 TR S AU72RHEZ BRI Y
BIrichm Tl Tnwzgd, Cnd ) GBhE T, BREICIIBEE, €T
HLNRREINHEL LB LTITbIhE T, L Lads, ZoEL W IlE
12, Hiz DREDBERZRERER, 3 bBBRIND 2 W ITABHE 724 (E-> T
Wi THMOEEN, DEdbn2asLTtuwEd, M5 IR LERTTFHAED
Wl — 2 ZITR LD ARPREIONA L& & 2807 58— (3, FRIRER)
TY, Z2ITiE, W ORI T, 2HELO-RERE, B Rito ki
PWRLTHNEY,

M5 ICRIN T SFE2 DTS L 72, Fith2 5 2 2R ELHEERE L TH
BEANIFHUI ) FHA, 3512, CTTIIIRENTWIRAN, 1. B &
T, B LG SETHOBR, S6ICHMTELWSL I ZRIENICH2 514
TN &) L RRA £ ) BRI EFR S ) 5, Wi D &, T
B« THOWRPO, NIE- LB 1EH, HI0ISESTT 6, AHOHIC
R R 728 2 2 L ICBIR T 2 BRI SRR 2 TRIT & 200725 ) H LRERIC
Boizbhsnas ) A,

o, HEERE - TR Cof K2 MEE, b 5 oS 1 kT Icikere §

96

Commemorative Lectures

innovative experimental technique of splat quenching was introduced (9). It led to
intensive scientific study of the structure and properties of metallic glasses, and
at the same time stimulated the development of larger-scale rapid solidification
processes such as melt spinning for thin-strip casting, and atomization for powder
making. Correspondingly, much attention of a scientific nature was directed to the
kinetics of solidification under conditions of rapid cooling and supercooling.

With regard to property measurements, it was found that iron-boron-silicon
and iron-boron-silicon-carbon amorphous solids are not only ferromagnetic, but
also exhibit very low hysteresis and eddy-current losses, primarily due to their
high electrical resistivity as well as their relative freedom from magnetocrystal-
line anisotropy and from microstructural defects normally associated with the
crystalline state. The prevailing societal pull for saving energy, in this instance
through decreased core-losses in electric transformers, provided a strong driving
force for further processes and alloy development based on these metallic glasses.
The ensuing improvement in core-loss reduction is shawn in Fig. 6, comparing the
new amorphous materials with the more familiar silicon steels (10). The 60-Hz
core losses of the metallic glasses going into the service testing of distribution
transformers are less than one-third of the best silicon steels, and further reduc-
tions to one-twentieth have been achieved (10).

In the operation of MSE, it will be obvious that the effective utilization of
metallic glasses in transformers depends not only on favorable magnetic prop-
erties, but also on mechanical behavior, formability, stability versus time and
temperature, and, of course, on the overall economics. Such interacting factors
can only be resolved and optimized by promoting a close interplay of scientific
and empirical findings. It has been reported that the performance tests on the
subject transformers have demonstrated improved service as expected, and
valuable additional information has been accumulated. Actual production is now
underway. Core losses in distribution transformers alone in the United States are
estimated to represent a wastage of three-quarters of a billion dollars annually, of
which approximately one-third can be saved by using the metallic glass cores (10).
Opportunities for the still-larger power transformers lie ahead, while many
applications for amorphous alloys in smaller magnetic devices are already at
hand.

This example of a materials advance serves to illuminate the way in which
novel processing methods can stimulate the detailed study and development of
previously unavailable materials and, in turn, lead to new technologies and
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products for filling the needs of society.

When rapid solidification processing is directed to crystalline materials, a
wide diversity of microstructures, not otherwise attainable, can be accessed. This
includes microstructural refinement of the matrix phase, unusual dispersions of
embedded precipitates, high degrees of solid-solution supersaturation, and forma-
tion of metastable states. The dispersed particles are of special interest here
because they are extremely fine, well distributed, and can have limited solubility
in the matrix phase. Because of the latter circumstance, the dispersed precipitates
resist coarsening at high temperatures, and so tend to remain effective in pinning
grain boundaries for inhibiting grain growth during subsequent thermomechanical
treatments. For similar reasons, dispersion strengthening tends to be maintained
at elevated temperatures. Moreover, rather large volume fractions of the disper-
sed phases are obtainable because the prior “solutionizing” is carried out in the
liquid state, and precipitation into unduly coarse embrittling inclusions on cooling
is avoided by the rapid solidification process.

Rapid solidificaiton by nitrogen-gas atomizing for achieving uniform disper-
sions of the primary carbides in high-speed steels has been in industrial practice
since 1970 (11), benefiting from improved toughness at high hardness levels.*
However, with the later innovation of centrifugal atomizing (12) and its potential
for advanced superalloys, the U.S.Air Force became intrigued with the wider
prospects for aerospace applications and initiated funding for more broadly-based
research and development on new alloy systems, thus exemplifying another classic
instance of societal pull in action. Because of the ultrafine-scale structures to be
investigated, a need arose for the most sophisticated high-resolution electron
microscopy and microanalytical instrumentation, and there erupted & spontaneous
urge for scientific inquiry. Mutually stimulating interactions throughout the
materials knowledge-transfer system of Fig. 1 came into play, rebounding dynami-
cally among scientific explanation, property enhancement, process improvement,
and high-technology performance, while concomitantly inspiring the joint partici-
pation of governmental, industrial, and academic institutions.

Some property results on rapidly solidified aluminum alloys are summarized
in Fig. 7(13). Unusual ranges of composition and exceptional dispersions of inter-
metallic phases are made possible by rapid solidification. The advantageous
strength-retention at elevated temperatures shown in Fig.7 for this class of
materials is a consequence of the resistance to coarsening of the relatively stable
dispersed phases. It is significant to note that, on a density-compensated basis,
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some of these aluminum alloys now equal or exceed the high-temperature strength
of titanium alloys. These aluminum alloys also exhibit marked resistance to saline
corrosion (Fig.8), which probably arises from the alloy chemistry and micro-
structural uniformity attainable by rapid solidification (13).

Up to the present time, the cost of rapid solidification processing has tended
to channel its commercial use toward high-value-added end-products that may not
yet be in the public domain. But it is clear that the underlying features of MSE are
at work.

Closure

Through the operation of the materials cycle on a global scale, materials now
constitute a basic resource of society that only connects peoples and governments
on this planet, but also joins humankind into a partnership with nature. The
ultimate purpose of MSE is to help advance human understanding of nature by
probing its materials thoroughly, and concurrently to help mankind live in har-
mony with nature by employing its materials intelligently. This dual objective,
both intellectual and utilitarian, forms an integral part of the overarching contri-
butions of science and engineering toward the general goal of human betterment
and social progress.

At present, MSE functions as a mixture of disciplines, i.e., as a multidisci-
pline, rather than as an individual branch of learning like physics, chemistry,
metallurgy, or ceramics. Of course, these disciplines originally did not enjoy
sufficient coherence or identity to be recognized by society as unified fields of
inquiry and endeavor. When such recognition does happen to emerge, it usually
signals a recodification or repackaging of knowledge by society, and is character-
istically reflected in the advent of university departments, curriculum, degrees, job
titles, technical societies, and professional groupings. This state of cohesion has
not vet been decisively reached by MSE, but events are certainly moving in that
direction. MSE has already established sufficient integrity to provide an attrac-
tive framework for newer classes of materials coming on the scene. Indeed, it is
no longer likely that polymeric, electronic, photonic, and biological materials will
form separate disciplines by themselves, as was the case earlier for metals and
ceramics. It may take another generation or two for society to determine whether
the various fields of knowledge that contribute to MSE will converge into a single
discipline unto itself. An interesting example of this kind of evolutionary change
is the field of medicine, which became a recognized discipline in spite of its many
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disparate specialties and subdisciplines. MSE can attain a similar stage of intellec-
tual and professional cohesion by demonstrating to society that it provides a new
challenge for studying naturc deeply and for using nature wisely.

In the meantime, MSE is passing through a vibrant period of ferment and
wondrous change. Knowingly or unknowingly, a substantial part of the world’s
technical community is caught up in it; and human well-being everywhere depends
on it.
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% When particulates are produced in rapid solidification processing, consolidation

into bulk materials is typically accomplished by powder-metallurgy techniques
such as hot extrusion and isostatic pressing.
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